In this Page, We are Providing Python Programming – Basic Operations. Students can visit for more Detail and Explanation of Python Handwritten Notes Pdf.
Python Programming – Basic Operations
Basic Operations
Arithmetic operations when applied on NumPy arrays, they are implemented element-wise.
>>> a=np . array ( [ 20 , 30 , 40 , 50 ] ) >>> b=np . arange ( 4 ) >>> c=a - b >>> c array ( [ 20 , 29 , 38 , 47 ] ) >>> b**2 array ( [ 0 , 1 , 4 , 9 ] ) >>> a<39 array ( [ True , True , False , False ] , dtype=bool )
The product operator * operates element-wise in NumPy arrays. The matrix product can be performed using the dot ( ) function or creating matrix objects (refer section 7.8).
>>> a=np . array ( [ [ 1 , 1 ] , . . . [ 0 , 1 ] ] ) >>> b=np . array ( [ [ 2 , 0 ] , . . . [ 3 , 4 ] ] ) >>> a*b array ( [ [ 2 , 0 ] , [ 0 , 4 ] ] ) >>> np . dot ( a , b ) array ( [ [ 5 , 4 ] , [ 3 , 4 ] ] )
Some operations, such as +=, *=, etc., modifies an existing array, rather than creating a new array.
>>> a=np . array ( [ [ 1 , 2 ] , # a is integer type . . . [ 3 , 4 ] ] ) >>> b=np . array ( [ [ 1 . , 2 . ] , # b is float type . . . [ 3 . , 4 . ] ] ) >>> a*=2 >>> a array ( [ [ 2 , 4 ] , [ 6 , 8 ] ] ) >>> b+=a >>> b array ( [ [ 3 . , 6 . ] , [ 9 . , 12 . ] ] ) >>> a+=b # b is converted to integer type >>> a array ( [ [ 5 , 10 ] , [ 15 , 20 ] ] )
When operating with arrays of different types, the type of the resulting array corresponds to the more general or precise one (a behavior known as “upcasting”).
>>> a=np . array ( [ 1 . 1 , 2 . 2 , 3 . 3 ] ) >>> a . dtype . name ' float64 ' >>> b=np . array ( [ 4 , 5 , 6 ] ) >>> b . dtype . name ' int32 ' >>> c=a+b >>> c array 0( [ 5 . 1 , 7 . 2 , 9 . 3 ] ) >>> c . dtype . name ' float64 '
Many unary operations, such as computing the sum of all the elements in the array, are implemented as methods of the ndarray class .
>>> a=np . array ( [ [5 , 8 ] , . . . [ 3 , 6 ] ] ) >>> a . sum ( ) 22 >>> a . min ( ) 3 >>> a . max ( ) 8
By default, these operations apply to the array as though it were a list of numbers, regardless of its shape. However, by specifying the axis parameter you can apply an operation along the specified axis of an array:
>>> a=np . arange ( 12 ) . reshape ( 3 , 4 ) >>> a array ( [ [ 0 , 1 , 2 , 3 ] , [ 4 , 5 , 6 , 7 ] , [ 8 , 9 , 10 , 11 ] ] ) >>> a.sum(axis=0) # Sum of each column array ( [12, 15, 18, 21] ) >>> a.min(axis=1) # Minimum of each now array ( [ 0 , 4 , 8 ] ) >>> a . cumsum ( axis=1 ) # Cumulative sum along each now array ( [ [ 0 , 1 , 3 , 6 ] , [ 4 , 9 , 15 , 22 ] , [ 8 , 17 , 27 , 38 ] ] )