Creating Numpy Array of different shapes & initialize with identical values using numpy.full()
In this article we will see how we can create a numpy array of different shapes but initialized with identical values. So, let’s start the explore the concept to understand it well.
numpy.full() :
Numpy module provides a function numpy.full()
to create a numpy array of given shape and initialized with a given value.
Syntax : numpy.full(shape, given_value, dtype=None, order='C')
Where,
- shape : Represents shape of the array.
- given_value : Represents initialization value.
- dtype : Represents the datatype of elements(Optional).
But to use Numpy we have to include following module i.e.
import numpy as np
Let’s see the below example to understand the concept.
-
- Create a 1D Numpy Array of length 8 and all elements initialized with value 2
- Create a 2D Numpy Array of 3 rows | 4 columns and all elements initialized with value 5
- Create a 3D Numpy Array of shape (3,3,4) & all elements initialized with value 1
- Create initialized Numpy array of specified data type
Example-1 : Create a 1D Numpy Array of length 8 and all elements initialized with value 2
Here array length is 8 and array elements to be initialized with 2.
Let’s see the below the program.
import numpy as np # 1D Numpy Array created of length 8 & all elements initialized with value 2 sample_arr = np.full(8,2) print(sample_arr)
Output : [2 2 2 2 2 2 2 2]
Example-2 : Create a 2D Numpy Array of 3 rows | 4 columns and all elements initialized with value 5
Here 2D array of row 3 and column 4 and array elements to be initialized with 5.
Let’s see the below the program.
import numpy as np #Create a 2D Numpy Array of 3 rows & 4 columns. All intialized with value 5 sample_arr = np.full((3,4), 5) print(sample_arr)
Output : [[5 5 5 5] [5 5 5 5] [5 5 5 5]]
Example-3 : Create a 3D Numpy Array of shape (3,3,4) & all elements initialized with value 1
Here initialized value is 1.
Let’s see the below the program.
import numpy as np # Create a 3D Numpy array & all elements initialized with value 1 sample_arr = np.full((3,3,4), 1) print(sample_arr)
Output : [[[1 1 1 1] [1 1 1 1] [1 1 1 1]] [[1 1 1 1] [1 1 1 1] [1 1 1 1]] [[1 1 1 1] [1 1 1 1] [1 1 1 1]]]
Example-4 : Create initialized Numpy array of specified data type
Here, array length is 8 and value is 4 and data type is float.
import numpy as np # 1D Numpy array craeted & all float elements initialized with value 4 sample_arr = np.full(8, 4, dtype=float) print(sample_arr)
Output : [4. 4. 4. 4. 4. 4. 4. 4.]