Python cmath.tan() Method with Examples

cmath.tan() Method in Python:

The cmath.tan() method returns the complex number’s tangent.

Syntax:

cmath.tan(x)

Parameters

x: This is Required. A number from which to calculate the tangent.

  • If the value is not a number, a TypeError is returned.

Return Value:

Returns a complex value that represents the complex number’s tangent.

Examples:

Example1:

Input:

Given Complex Number = 3+4j

Output:

The given complex number's (3+4j) tangent value = 
(-0.0001873462046294784+0.999355987381473j)

Example2:

Input:

Given realpart = 5
Given imaginary part = 2

Output:

The given complex number's (5+2j) tangent value = 
(-0.020553016568255655+1.0310080051524912j)

Note: The above input format is for dynamic input.

cmath.tan() Method with Examples in Python

Method #1: Using Built-in Functions (Static Input)

Approach:

  • Import cmath module(for complex number operations) using the import keyword.
  • Give the complex number as static input and store it in a variable.
  • Pass the given complex number as an argument to the cmath.tan() method that returns the given complex number’s tangent value.
  • Store it in another variable.
  • Print the tangent value of the given complex number.
  • The Exit of the Program.

Below is the implementation:

# Import cmath module(for complex number operations) using the import keyword.
import cmath
# Give the complex number as static input and store it in a variable.
complexnumb = 3+4j
# Pass the given complex number as an argument to the cmath.tan() method that
# returns the the given complex number's tangent value.
# Store it in another variable.
rslt = cmath.tan(complexnumb)
# Print the tangent value of the given complex number.
print("The given complex number's", complexnumb,
      "tangent value = ")
print(rslt)

Output:

The given complex number's (3+4j) tangent value = 
(-0.0001873462046294784+0.999355987381473j)

Similarly, try for the other examples

import cmath
complexnumb = -2-1j
rslt = cmath.tan(complexnumb)
print("The given complex number's", complexnumb,
      "tangent value = ")
print(rslt)

Output:

The given complex number's (-2-1j) tangent value = 
(0.24345820118572534-1.16673625724092j)

Method #2: Using Built-in Functions (User Input)

Approach:

  • Import cmath module(for complex number operations) using the import keyword.
  • Give the real part and imaginary part of the complex number as user input using map(), int(), split().
  • Store it in two variables.
  • Using a complex() function convert those two variables into a complex number and store them in a variable.
  • Pass the given complex number as an argument to the cmath.tan() method that returns the given complex number’s tangent value.
  • Store it in another variable.
  • Print the tangent value of the given complex number.
  • The Exit of the Program.

Below is the implementation:

# Import cmath module(for complex number operations) using the import keyword.
import cmath
# Give the real part and imaginary part of the complex number as user input
# using map(), int(), split().
# Store it in two variables.
realnumb, imaginarynumb = map(int, input(
    'Enter real part and complex part of the complex number = ').split())
# Using a complex() function convert those two variables into a complex number.
complexnumb = complex(realnumb, imaginarynumb)

# Pass the given complex number as an argument to the cmath.tan() method that
# returns the the given complex number's tangent value.
# Store it in another variable.
rslt = cmath.tan(complexnumb)
# Print the tangent value of the given complex number.
print("The given complex number's", complexnumb,
      "tangent value = ")
print(rslt)

Output:

Enter real part and complex part of the complex number = 5 2
The given complex number's (5+2j) tangent value = 
(-0.020553016568255655+1.0310080051524912j)