Scipy Library in Python:
- SciPy is a scientific computation package that uses the NumPy library underneath.
- SciPy is an abbreviation for Scientific Python.
- It includes additional utility functions for optimization, statistics, and signal processing.
- SciPy, like NumPy, is open source, so we can freely use it.
- Travis Olliphant, the developer of NumPy, created SciPy.
- SciPy has optimized and added/enhanced functions that are often used in NumPy and Data Science.
Scipy stats.halfgennorm.stats() Function
We can obtain the value of Mean(‘m’), variance(‘v’), skew (‘s’), and/or kurtosis(‘k’) by using the stats.halfgennorm.stats() function.
Syntax:
stats.halfgennorm.stats(beta, moments)
Return Value:
The value of mean, variance, skew, and kurtosis is returned by the stats() function.
Scipy stats.halfgennorm.stats() Function in Python
Method #1: Using stats() Function (Static Input)
Approach:
- Import halfgennorm() method from stats of scipy module using the import keyword
- Give the beta value as static input and store it in a variable.
- Pass the given beta value, moments =’mvsk’ as arguments to the stats() function of halfgennorm module to get the values of Mean, Variance, Skew, kurtosis for the given beta value.
- Store them in 4 separate variables
- Print the values of Mean, Variance, Skew, kurtosis for the given beta value.
- The Exit of the Program.
Below is the implementation:
# Import halfgennorm() method from stats of scipy module using the import keyword from scipy.stats import halfgennorm # Give the beta value as static input and store it in a variable. gvn_beta = 3 # Pass the given beta value, moments ='mvsk' as arguments to the stats() function of # halfgennorm module to get the values of Mean, Variance, Skew, kurtosis for the given beta value. # Store them in 4 separate variables Mean, Variance, Skew, kurtosis = halfgennorm.stats(gvn_beta, moments ='mvsk') # Print the values of Mean, Variance, Skew, kurtosis for the given beta value print("The values of Mean, Variance, Skew, kurtosis for the given beta{",gvn_beta,"} value:") print(Mean, Variance, Skew, kurtosis)
Output:
The values of Mean, Variance, Skew, kurtosis for the given beta{ 3 } value: 0.5054680881515111 0.1177841857623046 0.6327758514663764 -0.15848408785769097
Method #2: Using stats() Function (User Input)
Approach:
- Import halfgennorm() method from stats of scipy module using the import keyword
- Give the beta value as user input using the int(input()) function and store it in a variable.
- Pass the given beta value, moments =’mvsk’ as arguments to the stats() function of halfgennorm module to get the values of Mean, Variance, Skew, kurtosis for the given beta value.
- Store them in 4 separate variables
- Print the values of Mean, Variance, Skew, and kurtosis for the given beta value.
- The Exit of the Program.
Below is the implementation:
# Import halfgennorm() method from stats of scipy module using the import keyword from scipy.stats import halfgennorm # Give the beta value as user input using the int(input()) function and store it in a variable. gvn_beta = int(input("Enter some random number = ")) # Pass the given beta value, moments ='mvsk' as arguments to the stats() function of # halfgennorm module to get the values of Mean, Variance, Skew, kurtosis for the given beta value. # Store them in 4 separate variables Mean, Variance, Skew, kurtosis = halfgennorm.stats(gvn_beta, moments ='mvsk') # Print the values of Mean, Variance, Skew, kurtosis for the given beta value print("The values of Mean, Variance, Skew, kurtosis for the given beta{",gvn_beta,"} value:") print(Mean, Variance, Skew, kurtosis)
Output:
Enter some random number = 2 The values of Mean, Variance, Skew, kurtosis for the given beta{ 2 } value: 0.5641895835415295 0.1816901138291821 0.9952717461750911 0.8691773035274091