Scipy Library in Python:
- SciPy is a scientific computation package that uses the NumPy library underneath.
- SciPy is an abbreviation for Scientific Python.
- It includes additional utility functions for optimization, statistics, and signal processing.
- SciPy, like NumPy, is open source, so we can freely use it.
- Travis Olliphant, the developer of NumPy, created SciPy.
- SciPy has optimized and added/enhanced functions that are often used in NumPy and Data Science.
Scipy stats.halfgennorm.cdf() Function:
We can obtain the value of the cumulative distribution function by using the stats.hypsecant.cdf() method.
Syntax:
stats.hypsecant.cdf(x, beta)
Return Value:
The cumulative distribution value is returned by the cdf() function.
Scipy stats.hypsecant.cdf() Function in Python
Method #1: Using cdf() Function (Static Input)
Approach:
- Import hypsecant from stats of scipy module using the import keyword
- Give the beta value as static input and store it in a variable.
- Pass some random value(x), beta value as arguments cdf() function of hypsecant to the get the value of the cumulative distribution function and store it in another variable.
- Print the cumulative distribution function value for the given beta value.
- The Exit of the Program.
Below is the implementation:
# Import hypsecant from stats of scipy module using the import keyword from scipy.stats import hypsecant # Give the beta value as static input and store it in a variable. gvn_beta = 3 # Pass some random value(x), beta value as arguments cdf() function of hypsecant # to the get the value of the cumulative distribution function and store it in another variable. rslt = hypsecant.cdf(0.2, gvn_beta) # Print the cumulative distribution function value for the given beta value print("The cumulative distribution function value for the given beta value is:") print(rslt)
Output:
The cumulative distribution function value for the given beta value is: 0.03866527549256035
Method #2: Using cdf() Function (User Input)
Approach:
- Import hypsecant from stats of scipy module using the import keyword
- Give the beta value as static input and store it in a variable.
- Pass some random value(x), beta value as arguments cdf() function of hypsecant to the get the value of the cumulative distribution function and store it in another variable.
- Print the cumulative distribution function value for the given beta value.
- The Exit of the Program.
Below is the implementation:
# Import hypsecant from stats of scipy module using the import keyword from scipy.stats import hypsecant # Give the beta value as user input using the int(input()) function and store it in a variable. gvn_beta = int(input("Enter some random number = ")) # Pass some random value(x), beta value as arguments cdf() function of hypsecant # to the get the value of the cumulative distribution function and store it in another variable. rslt = hypsecant.cdf(0.6, gvn_beta) # Print the cumulative distribution function value for the given beta value print("The cumulative distribution function value for the given beta value{",gvn_beta,"} is:") print(rslt)
Output:
Enter some random number = 2 The cumulative distribution function value for the given beta value{ 2 } is: 0.1539176313854603