Pandas- Select first or last N rows in a Dataframe using head() & tail()

Pandas: Select first or last N rows in a Dataframe using head() & tail()

In this tutorial, we are going to discuss how to select the first or last N rows in a Dataframe using head() & tail() functions. This guide describes the following contents.

Select first N Rows from a Dataframe using head() function

pandas.DataFrame.head()

In Python’s Pandas module, the Dataframe class gives the head() function to fetch top rows from it.

Syntax:

DataFrame.head(self, n=5)

If we give some value to n it will return n number of rows otherwise default is 5.

Let’s create a dataframe first,

import pandas as pd
# List of Tuples
empoyees = [('Ram', 34, 'Sunderpur', 5) ,
           ('Riti', 31, 'Delhi' , 7) ,
           ('Aman', 16, 'Thane', 9) ,
           ('Shishir', 41,'Delhi' , 12) ,
           ('Veeru', 33, 'Delhi' , 4) ,
           ('Shan',35,'Mumbai', 5 ),
           ('Shikha', 35, 'kolkata', 11)
            ]
# Create a DataFrame object
empDfObj = pd.DataFrame(empoyees, columns=['Name', 'Age', 'City', 'Experience'], index=['a', 'b', 'c', 'd', 'e', 'f', 'g'])
print("Contents of the Dataframe : ")
print(empDfObj)

Output:

Contents of the Dataframe :
     Name  Age  City           Experience
a   Ram     34   Sunderpur 5
b   Riti       31  Delhi          7
c   Aman   16  Thane         9
d  Shishir   41 Delhi          12
e  Veeru     33 Delhi          4
f   Shan      35 Mumbai     5
g  Shikha   35 kolkata      11

So if we want to select the top 4 rows from the dataframe,

import pandas as pd
# List of Tuples
empoyees = [('Ram', 34, 'Sunderpur', 5) ,
           ('Riti', 31, 'Delhi' , 7) ,
           ('Aman', 16, 'Thane', 9) ,
           ('Shishir', 41,'Delhi' , 12) ,
           ('Veeru', 33, 'Delhi' , 4) ,
           ('Shan',35,'Mumbai', 5 ),
           ('Shikha', 35, 'kolkata', 11)
            ]
# Create a DataFrame object
empDfObj = pd.DataFrame(empoyees, columns=['Name', 'Age', 'City', 'Experience'], index=['a', 'b', 'c', 'd', 'e', 'f', 'g'])

dfObj1 = empDfObj.head(4)
print("First 4 rows of the Dataframe : ")
print(dfObj1)

Output:

First 4 rows of the Dataframe :
  Name    Age   City         Experience
a Ram      34     Sunderpur 5
b Riti        31    Delhi          7
c Aman    16    Thane        9
d Shishir   41   Delhi         12

So in the above example, you can see that we have given n value 4 so it returned the top 4 rows from the dataframe.

Do Check:

Select first N rows from the dataframe with specific columns

In this, while selecting the first 3 rows, we can select specific columns too,

import pandas as pd
# List of Tuples
empoyees = [('Ram', 34, 'Sunderpur', 5) ,
           ('Riti', 31, 'Delhi' , 7) ,
           ('Aman', 16, 'Thane', 9) ,
           ('Shishir', 41,'Delhi' , 12) ,
           ('Veeru', 33, 'Delhi' , 4) ,
           ('Shan',35,'Mumbai', 5 ),
           ('Shikha', 35, 'kolkata', 11)
            ]
# Create a DataFrame object
empDfObj = pd.DataFrame(empoyees, columns=['Name', 'Age', 'City', 'Experience'], index=['a', 'b', 'c', 'd', 'e', 'f', 'g'])

# Select the top 3 rows of the Dataframe for 2 columns only
dfObj1 = empDfObj[['Name', 'City']].head(3)
print("First 3 rows of the Dataframe for 2 columns : ")
print(dfObj1)

Output:

First 3 rows of the Dataframe for 2 columns :
   Name  City
a Ram    Sunderpur
b Riti      Delhi
c Aman  Thane

Select last N Rows from a Dataframe using tail() function

In the Pandas module, the Dataframe class provides a tail() function to select bottom rows from a Dataframe.

Syntax:

DataFrame.tail(self, n=5)

It will return the last n rows from a dataframe. If n is not provided then the default value is 5. So for this, we are going to use the above dataframe as an example,

import pandas as pd
# List of Tuples
empoyees = [('Ram', 34, 'Sunderpur', 5) ,
           ('Riti', 31, 'Delhi' , 7) ,
           ('Aman', 16, 'Thane', 9) ,
           ('Shishir', 41,'Delhi' , 12) ,
           ('Veeru', 33, 'Delhi' , 4) ,
           ('Shan',35,'Mumbai', 5 ),
           ('Shikha', 35, 'kolkata', 11)
            ]
# Create a DataFrame object
empDfObj = pd.DataFrame(empoyees, columns=['Name', 'Age', 'City', 'Experience'], index=['a', 'b', 'c', 'd', 'e', 'f', 'g'])

# Select the last 4 rows of the Dataframe
dfObj1 = empDfObj.tail(4)
print("Last 4 rows of the Dataframe : ")
print(dfObj1)

Output:

Last 5 rows of the Dataframe :
  Name     Age City    Experience
d Shishir   41   Delhi      12
e Veeru    33   Delhi       4
f Shan      35   Mumbai  5
g Shikha  35   kolkata    11

So in above example, you can see that we are given n value 4 so tail() function return last 4 data value.

Select bottom N rows from the dataframe with specific columns

In this, while selecting the last 4 rows, we can select specific columns too,

import pandas as pd
# List of Tuples
empoyees = [('Ram', 34, 'Sunderpur', 5) ,
           ('Riti', 31, 'Delhi' , 7) ,
           ('Aman', 16, 'Thane', 9) ,
           ('Shishir', 41,'Delhi' , 12) ,
           ('Veeru', 33, 'Delhi' , 4) ,
           ('Shan',35,'Mumbai', 5 ),
           ('Shikha', 35, 'kolkata', 11)
            ]
# Create a DataFrame object
empDfObj = pd.DataFrame(empoyees, columns=['Name', 'Age', 'City', 'Experience'], index=['a', 'b', 'c', 'd', 'e', 'f', 'g'])

# Select the bottom 4 rows of the Dataframe for 2 columns only
dfObj1 = empDfObj[['Name', 'City']].tail(4)
print("Last 4 rows of the Dataframe for 2 columns : ")
print(dfObj1)

Output:

Last 4 rows of the Dataframe for 2 columns :
     Name   City
d  Shishir  Delhi
e  Veeru    Delhi
f   Shan     Mumbai
g  Shikha   kolkata

Conclusion:

In this article, you have seen how to select first or last N  rows in a Dataframe using head() & tail() functions. Thank you!

Want to expert in the python programming language? Exploring Python Data Analysis using Pandas tutorial changes your knowledge from basic to advance level in python concepts.

Read more Articles on Python Data Analysis Using Padas – Select items from a Dataframe