In the previous article, we have discussed Python Program to Find Slope of a Line

Given the base of the isosceles triangle, the task is to find the count of the maximum number of 2*2 squares required that can be fixed inside the given isosceles triangle.

The side of the square must be parallel to the base of the given isosceles triangle.

**Examples:**

**Example1:**

**Input:**

Given base of triangle = 8

**Output:**

The maximum number of 2*2 squares required that can be fixed inside the given isosceles triangle = 6

**Explanation:**

**Example2:**

**Input:**

Given base of triangle = 6

**Output:**

The maximum number of 2*2 squares required that can be fixed inside the given isosceles triangle = 3

## Program for Maximum Number of 2×2 Squares That Can be Fit Inside a Right Isosceles Triangle in python:

Below are the ways to find the count of the maximum number of 2*2 squares required that can be fixed inside the given isosceles triangle:

### Method #1: Using Mathematical Formula (Static Input)

**Approach:**

- Give the base of the triangle as static input and store it in a variable.
- Create a function to say
**count_Squares****()**which takes the given base of the isosceles triangle as an argument and returns the count of the maximum number of 2*2 squares required that can be fixed inside the given isosceles triangle. - Inside the function, subtract 2 from the given base value as it is the extra part.
- Store it in the same variable.
- Divide the given base of the triangle by 2 since each square has a base length of 2.
- Store it in the same variable.
- Calculate the value of gvn_trianglebase * (gvn_trianglebase + 1) / 2 (Mathematical Formula) and store it in another variable.
- Return the above result which is the count of the maximum number of 2*2 squares required that can be fixed inside the given isosceles triangle.
- Pass the given base of the isosceles triangle to the
**count_Squares()**function and print it. - The Exit of the Program.

**Below is the implementation:**

# Create a function to say count_Squares() which takes the given base of the isosceles # triangle as an argument and returns the count of the maximum number of 2*2 # squares required that can be fixed inside the given isosceles triangle. def count_Squares(gvn_trianglebase): # Inside the function, subtract 2 from the given base value as it is the extra part. # Store it in the same variable. gvn_trianglebase = (gvn_trianglebase - 2) # Divide the given base of the triangle by 2 since each square has a base length of 2. # Store it in the same variable. gvn_trianglebase = gvn_trianglebase // 2 # Calculate the value of gvn_trianglebase * (gvn_trianglebase + 1) / 2 # (Mathematical Formula) and store it in another variable. rslt = gvn_trianglebase * (gvn_trianglebase + 1) // 2 # Return the above result which is the count of the maximum number of 2*2 squares # required that can be fixed inside the given isosceles triangle. return rslt # Give the base of the triangle as static input and store it in a variable. gvn_trianglebase = 6 # Pass the given base of the isosceles triangle to the count_Squares() function # and print it. print("The maximum number of 2*2 squares required that can be fixed inside the given isosceles triangle = ", count_Squares(gvn_trianglebase))

**Output:**

The maximum number of 2*2 squares required that can be fixed inside the given isosceles triangle = 3

### Method #2: Using Mathematical Formula (User Input)

**Approach:**

- Give the base of the triangle as user input using the int(input()) function and store it in a variable.
- Create a function to say
**count_Squares****()**which takes the given base of the isosceles triangle as an argument and returns the count of the maximum number of 2*2 squares required that can be fixed inside the given isosceles triangle. - Inside the function, subtract 2 from the given base value as it is the extra part.
- Store it in the same variable.
- Divide the given base of the triangle by 2 since each square has a base length of 2.
- Store it in the same variable.
- Calculate the value of gvn_trianglebase * (gvn_trianglebase + 1) / 2 (Mathematical Formula) and store it in another variable.
- Return the above result which is the count of the maximum number of 2*2 squares required that can be fixed inside the given isosceles triangle.
- Pass the given base of the isosceles triangle to the
**count_Squares()**function and print it. - The Exit of the Program.

**Below is the implementation:**

# Create a function to say count_Squares() which takes the given base of the isosceles # triangle as an argument and returns the count of the maximum number of 2*2 # squares required that can be fixed inside the given isosceles triangle. def count_Squares(gvn_trianglebase): # Inside the function, subtract 2 from the given base value as it is the extra part. # Store it in the same variable. gvn_trianglebase = (gvn_trianglebase - 2) # Divide the given base of the triangle by 2 since each square has a base length of 2. # Store it in the same variable. gvn_trianglebase = gvn_trianglebase // 2 # Calculate the value of gvn_trianglebase * (gvn_trianglebase + 1) / 2 # (Mathematical Formula) and store it in another variable. rslt = gvn_trianglebase * (gvn_trianglebase + 1) // 2 # Return the above result which is the count of the maximum number of 2*2 squares # required that can be fixed inside the given isosceles triangle. return rslt # Give the base of the triangle as user input using the int(input()) function # and store it in a variable. gvn_trianglebase = int(input("Enter some random number = ")) # Pass the given base of the isosceles triangle to the count_Squares() function # and print it. print("The maximum number of 2*2 squares required that can be fixed inside the given isosceles triangle = ", count_Squares(gvn_trianglebase))

**Output:**

Enter some random number = 8 The maximum number of 2*2 squares required that can be fixed inside the given isosceles triangle = 6

Find a comprehensive collection of Examples of Python Programs ranging from simple ones to complex ones to guide you throughout your coding journey.